

Evaluation of Voltage & Reactive Power Management Schemes for Distribution Circuits with RTDS

By: Farid Katiraei, Director – Renewables and Sustainability

Volt/VAR Control in the Era of the Smart Grid July 29, 2015 (1-3 pm)

Outlines

- Introduction
- Objectives and approach
- Existing methods
- Reported issues and gaps
- Solutions and verifications
- Control Hardware in Loop (CHIL) testing
- Test results and summary
- Next steps

Introduction

- Almost every utility is re-evaluating and investing their Volt/VAR management schemes:
 - Business drivers are strong! Many stakeholders are involved
 - Customer complains and regulatory requirements to enhance voltage quality at service entrance (voltage sensitive appliances)
 - High penetration of DERs, especially PV and wind, causing voltage issues due to sudden changes and reverse power flow
 - Automation and optimization opportunities to reduce demand through managing losses and demands with CVR (conservation voltage reduction)
 - Use the schemes to detect faulty devices and reduce maintenance (e.g. fuse blown on switched caps)

Investigation Approach

- Investigate methods presently applied in the field
- Analyze the issues and gaps in the existing methods
- Identify solutions for enhancing existing schemes incremental improvements (what other utilities have done!)
- Verify proposed solutions through Control Hardware in Loop (CHIL) testing
- Investigate cost and benefits of advanced Volt/VAR control methods – business aspects and visions
- Methods of incorporating Inverter-based voltage control strategies: pf, dynamic Var, Voltage regulation
- Evaluate control schemes (vendor offering)
- Develop deployment roadmap

Key Targets for Volt/VAR Program

- To manage the voltage profiles of distribution circuits within a prescribed voltage range according to circuit designation (e.g. CVR versus non-CVR circuits)
 - In addition, the method should prevent and correct any impact on the voltage profile of adjacent circuits due to variations in operating voltage set points or reactive power of a target circuit.
- To reduce energy consumption, line losses, and demand by optimizing voltage level and adjusting reactive power flow throughout the circuit
 - maintaining the designated reactive power (or power factor)
 requirements on transformer banks at the substation

Existing Volt/VAR Methods

- Two generation of schemes:
 - Passive schemes, using localized (device-level) controls and time delay (time-bias)
 - no communications, standard settings and controls
 - Pre-programmed delays
 - Limited number of SCADA controlled feeder devices
 - Operator control of switched capacitors (remote on/off) and adjusting of tap position on voltage regulators
 - To control with D-SCADA, a device needs to be in manual mode
 - Not a large coverage of circuits

Reported Problems

- Voltages going out of acceptable ranges
 - DG additions, time biased Capacitors, and VRs with tap saturation
- Reverse power flow affecting operation, due to large DG installations
 - Increase in voltages, possible impact on forward looking VRs
- Low accuracy CTs and PTs (or no CTs) + bad measurements
 - Bad (or no) measurements → how can they trust data?
- Ringing phenomena produced by switching on/off capacitors
 - Can the number of switching be limited or can we control the transients?
- Nuisance voltage alarms from SCADA Caps too many alarms
 - Alarm processing and prioritization is needed!
- Excessive voltage regulator (tap) operations wear/tear impact
- Excessive VAR injection to transmission systems during light loading of circuits, causing transmission overvoltage problems
 - Step by step cap switching for substation cap, or adjusting time bias on circuit caps

Regulatory and Planning Requirements

Operating voltage for the circuits:

	Maximum Voltage	Minimum Voltage	Contingency Voltage (min)	Service entrance voltage
Non-CVR circuits	12.6 kV	11.9 kV	11.5 kV	120V
	(1.05 pu)	(0.992 pu)	(0.958 pu)	+5%
CVR	12.3 kV	11.9 kV	11.5 kV	120V
circuits	(1.025 pu)	(0.992 pu)	(0.958 pu)	±5%

Power factor and reactive power constraints:

Enhance Monitoring to Detect Issues

Extensive overvoltage on part of a circuit

Voltage Increase due to High PV

Significant voltage increase during noon time (1.09 pu)

Extreme Voltage Fluctuations

Voltage Variations

Effect of PV fluctuations

Solutions and Test Cases

- Base case evaluation No PV and with PV
- Change of control modes on Voltage Regulators: Lock forward, co-gen, or bidirectional
- Change of timer resetting methods for controllers (Fast reset, Disk)
- Change of bandwidth range for adjusting the control response
- Change of power factor at PV facility (fixed, non-unity power factor on legacy inverters)

Power & Energy Socie

Timer reset methods

VR Operating Modes & Controls

Power & Energy Society®

Study Circuit

RTDS - Control Hardware in Loop

Test Results

	Case #	1	2-a	2-b	3-b	5-a	5-b
	Device	Cogen with Fast Reset	Cogen with Disk Reset	Cogen with Disk Reset & 0.95 lagging PV PF	Cogen with Fast Reset & High-range LDC setting on VR3	Cogen with Disk Reset & Wide Bandwidth setting (4V) for VR2	Cogen with Disk Reset & Wide Bandwidth setting (4V) for VR2 & 0.95 lagging PV PF
	LTC	1	1	1	1	1	1
	CAP VR1	0 8	0 11	5	<u> </u>	0 6	0 3
	VR2A	42	45	19	51	31	10
Тар	VR2B	40	42	21	45	31	12
operations	VR2C	52	47	18	53	33	10
	VR3A	22	23	15	29	36	17
	VR3B	21	33	13	27	31	22
	VR3C	24	24	9	26	36	21
	LTC	100%	100%	100%	100%	100%	100%
	САР	100%	100%	100%	100%	100%	100%
% of time	VR1A	99%	99%	100%	99%	99%	100%
voltage in	VR2A	90%	89%	97%	88%	90%	97%
the	VR2B	91%	90%	96%	89%	90%	98%
acceptable	VR2C	88%	88%	98%	89%	90%	98%
range (0.98 -	VR3A	86%	84%	95%	82%	87%	95%
1.05 pu)	VR3B	87%	86%	96%	84%	87%	95%
	VR3C	86%	86%	96%	83%	87%	96%
	PV	81%	80%	99%	80%	81%	99%

₩IEEE

Case 1 – VR2 Operation and Voltage Profile

Flicker due to Frequent Voltage Changes

Case 5-a: VR2 Operation and Profile

Case 5-b: VR2 Operation (non unity pf)

Power & Energy Society®

Flicker due to Frequent Voltage Changes

Change in bandwidth and power factor adjustment

Test Results - Voltage Profiles

Power & Energy Society®

Summary of Observations

Action	Impact			
By customizing the regulator settings and control schemes the voltage profile and device operation can be enhanced				
Setting customization approach adds the burden of additional studies and engineering design for each circuit, as well as establishing setting database (O&M) for all the circuits	15			
Settings need to be re-visited and re-evaluated seasonally or after re- configuration	19			
Applying non-unity power factor to large PV systems is a great approach				
Non-unity power factor increases reactive power exchange of the circuit	19			

Thank You!

Questions and Discussion

fkatiraei@quanta-technology.com

(647) 330-7379

